Safe Recursive Set Functions

نویسندگان

  • Arnold Beckmann
  • Samuel R. Buss
  • Sy-David Friedman
چکیده

We introduce the safe recursive set functions based on a Bellantoni-Cook style subclass of the primitive recursive set functions. We show that the functions computed by safe recursive set functions under a list encoding of finite strings by hereditarily finite sets, are exactly the polynomial growth rate functions computed by alternating exponential time Turing machines with polynomially many alternations. We also show that the functions computed by safe recursive set functions under a more efficient binary tree encoding of finite strings by hereditarily finite sets, are exactly the quasipolynomial growth rate functions computed by alternating quasipolynomial time Turing machines with polylogarithmic many alternations. We characterize the safe recursive set functions on arbitrary sets in definability-theoretic terms. In its strongest form, we show that a function on arbitrary sets is safe recursive if and only if it is uniformly definable in some polynomial level of a refinement of Jensen’s J-hierarchy, relativized to the transitive closure of the function’s arguments. We observe that safe recursive set functions on infinite binary strings are equivalent to functions computed by infinite-time Turing machines in time less than ωω. We also give a machine model for safe recursive set functions which is based on set-indexed parallel processors and the natural bound on running times. All three authors thank the John Templeton Foundation, Project #13152, for supporting their participation in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia, Spain during which this project was instigated. This research was partially done while the author was a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in the programme “Semantics & Syntax”. Supported in part by NSF grants DMS-0700533, DMS-1101228 and CCR-1213151, and by a grant from the Simons Foundation (#208717 to Sam Buss). Supported in part by the FWF (Austrian Science Fund) through FWF project number P 22430-N13.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cobham recursive set functions

This paper introduces the Cobham Recursive Set Functions (CRSF) as a version of polynomial time computable functions on general sets, based on a limited (bounded) form of ∈-recursion. This is inspired by Cobham’s classic definition of polynomial time functions based on limited recursion on notation. We introduce a new set composition function, and a new smash function for sets which allows poly...

متن کامل

Computability over an Arbitrary Structure. Sequential and Parallel Polynomial Time

We provide several machine-independent characterizations of deterministic complexity classes in the model of computation proposed by L. Blum, M. Shub and S. Smale. We provide a characterization of partial recursive functions over any arbitrary structure. We show that polynomial time computable functions over any arbitrary structure can be characterized in term of safe recursive functions. We sh...

متن کامل

The Set of Primitive Recursive Functions 1

We follow [31] in defining the set of primitive recursive functions. The important helper notion is the homogeneous function from finite sequences of natural numbers into natural numbers where homogeneous means that all the sequences in the domain are of the same length. The set of all such functions is then used to define the notion of a set closed under composition of functions and under prim...

متن کامل

The Set of Primitive Recursive Functions 1 Grzegorz Bancerek University of Białystok Shinshu

We follow [23] in defining the set of primitive recursive functions. The important helper notion is the homogeneous function from finite sequences of natural numbers into natural numbers where homogeneous means that all the sequences in the domain are of the same length. The set of all such functions is then used to define the notion of a set closed under composition of functions and under prim...

متن کامل

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Log.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2015